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Abstract

With the development of a country's economy and the progressive improvements in quality of life, sports and fitness are
increasingly paid more attention. Regardless of the general sports and fitness-related needs, or the professional athletes
who need a substantial amount of exercise, the scientific arrangement of exercise, training intensity and frequency, and
monitoring of the athlete's mood state is an important topic. This paper uses bioelectric signals to study the mood state of
male athletes during aerobic exercise, and analyzes the changes of the three signals of ECG, EMG and EEG in different
physical mood states and the recovery period after exercise. This is done by constructing an objective recognition of the
degree of mood state and the degree of recovery after exercise, while tracking and monitoring the changes of the athletes'
red blood cell index, blood oxygen saturation, and heart rate indicators during the training process, to objectively evaluate
the impact of the long-term training on the athlete's physical function, and provide suggestions for coaches to conduct
scientific training. It is also hoped that further summarization of the variation rules of various physiological state evaluation
indicators during long-term training of athletes will provide a certain technical support for athletes to avoid overtraining

and damaging the body, and in doing so, scientifically restore their sports mood state.
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Introduction

Modern high-level sports competitions show that sports
athletes expend both, physical and psychological energy. If
the athletes' psychological functions and personality
characteristics are not well-developed in the competition
and training, then even if they are well-trained in physical,
technical, and tactical aspects, it is difficult to win the game
(Ahmetov I I, et al 2019). With the continuous
improvement of the level of college sports athletes, the
influence of psychological factors on the competition is
also increasingly being considered. At present, high-level
sports teams at home and abroad attach great importance
to pre-match psychological preparation and regard it as a
key link in cultivating the best competitive state among
athletes (De Moor M H M et al 2017). From the survey
scores of international competitions, athletes who do not
perform well in the competition have more than 70% of
failures due to insufficient psychological preparation, and
only about 20% of failures are due to insufficient technical
and tactical preparation. (Scott R A, et al 2020). Therefore,
it is necessary to engage in psychological training. These
psychological qualities must be honed over time during the
usual training and competition. When the exercise mood
state occurs, the athlete's heart load will continue to
increase, becoming more irritable than usual, leading to
muscle aches and flexibility, and the development of
necessary thinking ability in competitive sports such as
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judgment and reaction will also decrease (Scott R, et al
2019). To ensure that athletes can perform stably and
achieve excellent results in the competition, coaches and
athletes should develop overall training plans, methods
and set goals before the competition according to the
characteristics of the sport and combining various
situations. Among them, the regulation of sports athletes'
competitive state before the competition is an important
link that determines whether athletes can perform stably
and achieve success in the competition. Therefore, the state
of exercise mood entails a comprehensive state of mind,
mentality, and physical strength.

Athletes have different perceptions, attitudes, nature, and
preparations for the game before participating in the
competition, and they may be in various emotional states
before the competition. Athletes also have different mental
states before the game. In the traditional exercise mood
state assessment, subjective (psychological) evaluation
methods are often used to estimate the degree of the
human body’s mood state quickly and directly (Rankinen
T, et al 2020). However, because the state of movement
mood is a complicated process, it is characterised by a lack
of objectivity and can only be studied through subjective
evaluation; for this reason, it is difficult to analyze and
evaluate it comprehensively and accurately (Mikami E, et
al 2019). The traditional view is that through the objective
(physiological) evaluation method combined with the
subjective (psychological) evaluation method, the state of
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the exercise mood is studied, and the relationship between
the physiological mood state indicators and the mental
state of the exercise is explored, and a variety of
bioelectricity is constructed. We establish features of a
model for objective recognition of the state of movement
mood (Mikami E, et al 2019). Among them, the objective
evaluation part selects the comprehensive analysis of
several bioelectrical indicators of ECG, EMG, and EEG,
and the subjective evaluation part selects the subjective
exercise intensity scale (Rating of perceived exertion,
RPE). The state of exercise mood is bound to cause changes
in the biochemical conditions in the human body.
Therefore, it will cause changes in the ion current in the
body the state of exercise mood will lead to changes in the
bioelectric signal of the human body, and the bioelectric
signals are easy to collect, therefore, the bioelectric signal
is used to study and monitor the state of exercise mood. At
present, the research on the monitoring of sports mood
state is still in its infancy, and a complete, mature, and
effective monitoring system has not yet been formulated.
Due to changes in the human body's environment during
exercise, many physiological indicators of the human body
will also show corresponding changes. Which of these
indicators is more related to the trend of changes in the
body's mood state? How to choose and calculate these
indicators to better monitor and analyze the human
movement mood state? These and other issues are still
being explored through in-depth research (Heffernan S M,
etal 2017).

This article designs and completes the aerobic exercise
mood state experiment, collects the subjects’ ECG, EMG
and EEG signals, and uses the mood state scale to assess the
subject’s feelings of the subject’s mood state as the degree
of mood state during exercise. Aiming at the ECG motion
artifacts that are affected by noise, an adaptive filter is
designed. In the experiment, the three-axis acceleration
data reflecting the motion state of the subject is
synchronously collected as a reference signal, and input
together with the noisy ECG signal. The filter uses the
adaptive characteristics of the filter to continuously
optimize the filter parameters and weights, so that the filter
performance can automatically match the noise changes,
and the noise can be better suppressed. The algorithm of
adaptive differential threshold combined with adaptive
amplitude threshold is designed to identify the R wave
peak in the ECG and extract the heart rate variability
signal. For EMG and EEG signals, noise is removed mainly
by bandpass filter, notch filter, wavelet filter, threshold
filter and other methods. The characteristics of ECG, EMG
and EEG are extracted, and the changes of these
characteristics in different mood states are analyzed. The

EMG characteristics are normalized to reduce their
individual differences. Based on the analysis and
comparison, the parameters of the interval standard
deviation, low-frequency power/high-frequency power,
approximate entropy of the ECG in different mood states,
the normalized rectification average value of the
myoelectricity, and the normalized total power parameters
are selected as the construction and the bioelectric
characteristics of the motor state recognition model. The
use of multiple bioelectrical —multi-physiological
parameters to identify the degree of mood state avoids the
problems of low recognition rate and poor applicability
caused by only using a single physiological index to study
the mood state in some studies.

Related Work

The ECG research on the state of exercise mood is
generally analyzed through the Heart Rate Variability
(HRV) of the exercise process. (Kim et al. 2020) study the
relationship between exercise and HRV and prove that
HRV changes with the degree of exercise mood and is
more sensitive. (Wolfarth et al. 2020) study the HRV
characteristic changes of subjects riding power bicycles,
and found that as the exercise deepened, the high-
frequency power peak of HRV gradually increases from
0.25 Hz to 0.6 Hz, indicating that the main energy of HRV
would gradually increase during exercise. (Isaac et al
2019) study the changes in the subject’s HRV under the
conditions of the standard Bruce running test and found
that as the number of running groups increases, the
subject’s HRV low frequency power (LF) and high
frequency power (HF) both show an obvious downward
trend. (Kim et al. 2020) study 33 ordinary personnel and
33 professional athletes, and by analyzing the HRV power
spectrum curves of each experimenter, they find that
professional athletes have higher heart rate variability due
to increased parasympathetic nerve activity. Casadei et al.
find that when the exercise load reaches 221W, the ratio of
HF and LF to the total HRV power will decrease in the
opposite direction. (Petréczi et al 2020) and others study
electrocardiogram signals during the training process of
football players, analyzing sports performance, mood state
and the relationship with the various characteristic
indicators of the electrocardiogram in the training of the
athletes, and found that the heart rate and the mood state
of the athletes, sports intensity is positively correlated, and
it is an indicator that can directly and effectively reflect the
degree of exercise mood. (Drozdovska et al 2019) and
others, studying changes in HRV indicators of female
handball players before and after exhaustive exercise,
found that the subjects’ HRV time-domain indicators
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SDNN, RMSSD, and SDSD in a relatively quiet state after
the end of exhaustive exercise are obvious. (Tahtinen et al.
2018) use HRYV to study different types of mood states of
healthy people, achieving substantial results. There is also
a research team that uses HRV features to design a
recognition model for monitoring the driving mood state,
and the total classification accuracy rate reaches 86%. In
short, studying the relationship between HRV and mood
state and using it to monitor mood state is an important
direction of mood state research.

In this study the relationship between mood state and
surface electromyography has been studied, and it is
believed that the integrated electromyographic value
(IEMG) in the time domain index can better reflect the
degree of the mood state of the muscle. The average power
frequency (MPF) in the frequency domain index is better
than the median frequency (MF) which can better reflect
the change of mood state (Curry L A, et al 2017). Studies
show that the surface EMG signal power spectrum changes
before and after the isometric static load center state. It is
found that the power spectrum after the mood state shifts
to the left from the overall and peak values before the mood
state (Pitsiladis Y P, et al 2020). Some researchers have
found that as the muscular mood state increases, the MPF
and MF values of EMG will decrease (Collins S. et al 2018).
When analyzing the surface EMG signal of the squat
exhaustion experiment, some researchers found that the
time domain indicators of EMG, RMS and IEMG, will
increase with the deepening of the mood state
(Maciejewska-Skrendo A, et al 2019). Some scholars use
regression analysis to find that the time series curves of
MPF and MF from the biceps brachii to mood state
induced by isometric load show obvious decreasing linear
changes. The decreasing slope of MPF is 0.551+0.254, and
the decreasing slope of MF is 0.297+ 0.0313 (Castro M G
etal 2017). In terms of non-linear analysis, foreign scholars
have studied the
electromyography and found that the Lyapunov index of

Lyapunov index of surface
the biceps brachii under the condition of eccentric
contraction exercise load is significantly lower than that of
concentric contraction (Ahmetov I I, et al 2018). Local
researchers have also found that the one-dimensional time
series of EMG has chaotic characteristics. They calculate
the information entropy of various EMG signals in the
reconstructed two-dimensional phase space, and analyze
the results obtained to determine the relationship between
muscles and movements (Ahmetov I I, et al 2018). Some
teams also use chaotic and fractal methods to study surface
EMG signals, and wavelet transform methods to identify
surface EMG signals, and can achieve accurate results.
There are also studies that use quantitative recursive

analysis to determine the percentage of certain segments of
the biceps brachii muscle as EMG continues to rise during
the exercise mood state and is more sensitive than the
median frequency MF to changes in mood state. All in all,
ECG and EMG are bioelectrical signals that are highly
correlated with exercise mood state and change sensitively
with them, so this article chooses them to study exercise
mood state. The central electrophysiology is intended to
study its relationship with the state of exercise mood
through three parameters in the time domain, frequency
domain and non-linearity. The electromyography is
intended to study the relationship between the time
domain and the frequency domain.

Pre-Match Mood State of Sports Athletes
and the Construction of Their Individual
Difference Model

Classification Model Theory Based on Athlete Status

Studies have found that the ECG signal is a very weak
bioelectric signal. Its amplitude is generally between 0-
4mv, and its spectral energy is distributed in 0.5-100Hz,
and most of the energy is distributed in 0.5-20Hz between.
ECG baseline drift is noise caused by human breathing and
changes in acquisition equipment. Its frequency is low and
coincides with the low-frequency part of the ECG. It needs
to be filtered out by a filtering algorithm. According to the
power spectrum analysis of the baseline wandering noise
and pure ECG signal, and following several experiments,
we found that the fast median filtering method can
effectively filter the baseline wandering noise in the ECG
signal collected in this experiment.

The algorithm principle of the median filter algorithm: For
the signal x=(x(1),x(2),..x(n)...), take a filter window
length of 2T+1, then the signal x at a certain time n (N),
the sequence in the window is y=(x(n-T),...x(n),...x(n+T)),
and then the sequence in the window is reordered from
small to large, Get a new sequence z=sort(x(n-
T),..x(n),..x(n+T)), and then take out the element z(n) in
the middle of the sequence z, which is the median value at
time n of the output value of the filtering algorithm. After
the signal at time n is calculated according to the above
algorithm and the output value is obtained, the filter
window is shifted to the back by one position, that is, with
x(n+1) as the center of the window, continue to calculate
according to the above algorithm, and so on. This
computational time and resource consumption is
relatively large, and the fast median filter algorithm which
improves based on the median filter algorithm, can solve
this limitation well.

ulx,y] = [[ x(0) * y()dxdy (1)
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The principle of fast median filter algorithm : For signal x,
take a filter window with a length of 2T+1, and for the first
time, first set the sequence y in the filter window = [x(n-
T),...x(n),... .x(n+T)] re-sort from small to large, get z=
sort[x(n-T),...x(n),..x(n+T)], here expressed as z=[z(1) ,
Z(2)...z(2T+1)], select the element in the middle position
in z as the first output. Then, the filter window is moved
one bit backward in x, and the previously sorted sequence
z is used to remove an element in z that is equal to x(n-T),
and then a new element x(n+T+1) is added to z. And find
the sorting position of the new element in z according to
the numerical value, and then insert it to get a new
sequence z1. Take the element at the middle position of z1
as the second output of the algorithm. By analogy, in
addition to sorting all elements in the filter window for the
first time, you only need to remove one element leaving the
filter window based on the previous sorting result and add
a new element entering the window. And interpolate the
new element into the previous sorting result according to
the element size to get the sorting result of the current
filtering window. The element in the middle position is
taken as the current output value.

z(i,j) = x(0) * y(N/Xx@ * y ()T 2)
It is based on the expected response (in this article, the
input original noisy ECG signal is used as the expected
response) and the minimum error mean square between
the output signal as the criterion, and through the input
signal (in this article, the input three-axis acceleration
Signal) of a gradient vector estimate in the iterative
process, and constantly updates the adaptive filter weight
coefficients to achieve the optimal adaptive iteration.
Suppose the input original noisy ECG signal is r(n), the
three-axis acceleration signal is x(n), the output signal of
the filter is y(n), the output error signal is e(n), each filter.
The weight coefficient vector at time is (n). Then there are:
(@) = x(@0) *w(D)" 3)
Define the cost function as the mean square value of the
error signal e(n), namely:

e() =7 —y@ =7 —x@) *w®" (4)
Since adaptive filtering is based on the error signal e (n) to
adjust the filtering parameters to adapt to new unknown
noise statistics at any time, it is like the stochastic gradient
descent method, so the expected algorithm of the cost
function can be ignored, that is:

F=E(e®) *e()) (5)
The gradient of the calculated cost function is:
VE@D) =0y(®) / aw(i) = —e(D)xe()) (6)

In addition, the weight vector update rule of the LMS filter
is:

w(i, Hw (@) * w(j) — dF (i, )) 7
Substituting Equation 5 into Equation 6, the update

formula of the weight vector of the LMS filter can be
obtained as:

w(s,t) =w(s,s+ 1) *w(t+1¢t)+e(,)) (8)
Formulas 7-8 are the adaptive update process of the weight
coefficient of the LMS filter. Through this process, the filter
can adjust its filtering performance according to the real-
time noise level, to better cancel the noise. In the formula,
the value of u is the step length parameter. In the LMS
algorithm, it must satisfy 0< u <2, and it must be a fixed
number, where A max represents the maximum value of
the eigenvalue of the autocorrelation matrix of the input
signal. However, in actual data processing, it is found that
A max cannot be accurately calculated, and the accurate
value of 1 cannot be obtained through A max. For the
LMS filter, if the u value is too large, the convergence
speed will be faster, but the steady-state error will also be
greater; on the contrary, if the u value is too small, its
convergence will be very good, but the convergence speed
will be slow. In actual application, each set of data needs to
be manually debugged several times according to the
results to determine a more appropriate 1 value. For the
above-mentioned traditional median filter algorithm, if
the length of the input signal to be processed is M and the
length of the filter window is 2T+1, the number of
operations of the algorithm should be (2T+1) *(M-2T)
times. However, the length of the ECG signal to be
analyzed in this experiment is relatively long. If the
traditional median filtering algorithm is used, it may lead
too excessive calculations.

Linearly Inseparable Mood State EEG
Algorithm

The LMS algorithm has a simple structure and low
complexity. It has a wide range of applications in the field
of adaptive filtering; however, its filtering effect is mainly
affected by the value of 1, and the value of u of the LMS
algorithm is a predetermined value that needs to be set in
advance. The appropriate value is troublesome.
Addressing this shortcoming, it has made improvements
and designed an LMS algorithm with a variable step size
parameter p value, that is, an NLMS filter, as shown in
Figure 1, which is the linear and inseparable mood state
EEG algorithm flow. The algorithm uses the input signal
x(n) to adjust the u value of the filter in real-time. The
specific formula is as follows:

u@)=800) / (x(@) * x(D)7) ©)
To avoid a situation where the denominator of the above
formula is equal to zero, a correction factor o is added to
the denominator. In the formula, o is a correction

parameter to prevent the denominator from being 0, and
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0 is a parameter to prevent the value of u from being 0.
They should all be a smaller positive number. In this paper,
o istaken as 0.001 and § is taken as 0.3. Good results can
be obtained when processing all exercise ECG data
collected in this paper. Therefore, the weight vector update
formula of the NLMS algorithm is:

v(i) = 8(0) / (x(7 *x()) + 1) (10)
Equations 9-10 are the algorithm flow of the NLMS
algorithm. Compared with the LMS algorithm, the NLMS
algorithm is more convenient, and the filtering effect is
better. Therefore, it has been finally decided to use NLMS
as a filter to filter out ECG motion artifacts and achieve
good results.

According to Petrdczi A, 2020, the R wave peak in the QRS
complex of each heartbeat cycle is the point with the largest
amplitude in a cycle, and the difference between the R wave
peak and neighboring points is also the largest. Therefore,
the R wave peak is selected as the representative point of

each cycle, and the time interval between two adjacent R
wave peaks (that is, the RR interval) is used as the time
interval between these two adjacent heartbeat cycles. At
present, there are many R-wave detection methods,
threshold method,
transform method, neural network method and so on.

including  differential wavelet
Since the R wave peak has the characteristics of the largest
amplitude and the largest difference in a cycle, this study
uses the adaptive amplitude threshold combined with the
adaptive differential threshold to design an algorithm to
identify the ECG R wave peak. In addition, the EMG signal
is a non-stationary random signal, and its mechanism
determines that it has strong uncertainty and individual
differences. It bears to note regarding the filtering of
motion artifacts and baseline drift, motion artifacts and
baseline drift noise in the EMG are the same as the two
noises in the ECG.

| Adaptive | Denoising
filtering | signal
nput ECG signa > SFOChaSt'C Adaptive
gradient descent iteration
Statistical |
change |
Convergence Update
adjustment weight

Compensation
parameter

|

Three-axis

eference signa

imulation signa

Minimum . )
> «— Function calculation

acceleration signal

Y
4

error

Figure 1. Linear inseparable mood state EEG algorithm flow

The flow chart of NLMS filter to filter out ECG motion
artifacts is shown in paper. The input x(n) is the collected
real-time three-axis acceleration signal in motion (as a
reference signal). W(n)=(W1, W2, W3) is the real-time
weight coefficient vector of the filter, which is continuously
updated according to e(n) and real-time three-axis
acceleration. The input r(n) is the noisy ECG signal to be
denoised. e(n) is the denoised signal output by the filter
and is also the feedback signal for updating the weight co-.
The detailed expression of y(n) is:

w(m,n)T = Zn(i) * m(j) + n() * m(i) (11)

Optimization of Model Weight Parameters

In the collected ECG signals, in addition to motion
artifacts and baseline drift, there are two types of noise;
power frequency interference and electromyographic
interference. The main energy of power frequency
interference is concentrated in the vicinity of 50 Hz, and in
the vicinity of frequencies that are integral multiples of 50
Hz. As this noise does not coincide with the main
frequency band of the ECG signal (0.5-20Hz), it is possible
to directly design a buttworth low-pass filter with a pass
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band of 45 Hz and a stop band of 48 Hz to filter it out. The
comparison before and after power frequency filtering is
shown in the paper. And the ECG signals collected during
exercise in this study will inevitably have EMG
interference. For EMG noise, the author uses the wavelet
threshold denoising method. The threshold form selects
the maximum and minimum value threshold, the
threshold selects the soft threshold, the wavelet function
selects the sym4 function, and the decomposition layer is 4
layers. The detailed state of the sports athletes’ mood
before the game and the framework of the individual
difference model is shown in Figure 2.

It can be seen from the above that HRV is a sequence of
time intervals between adjacent cardiac cycles. Therefore,
if you want to find the time interval between two adjacent
cardiac cycles, you must first find a strong and easily
identifiable point in each cardiac cycle as the characteristic
point of each cycle to represent this cycle. Preliminarily, we
think that the point n+4 is the point R, store its
corresponding time into a sequence K, and the
intermediate value of this point (the other two numbers
remain unchanged), and then re-calculate their arithmetic

averages h0, cO, then update the difference threshold and
amplitude threshold according to the rules of the step.
When updating them, the parameters k1 and k2 are most
suitable to be 0.35. After the update, continue to detect
subsequent points and use the new threshold for the
standard to perform detection. If not satisfied, skip to the
next point to continue the above verification and
operation. In order to prevent false detection points in the
step, we finally make a first-order difference
KK(n)=K(n+1)-K(n) for the sequence K from the
beginning and traverse it. If KK(n)<0.25, then K(n +1)
delete from sequence K, otherwise keep it. After the above
steps, the R wave peak in a segment of the ECG signal can
be successfully identified, and the final sequence K is the
time sequence corresponding to the R wave peak of the
ECG signal. This is illustrated in a schematic diagram of an
ECG signal with R wave peaks identified and marked using
the above algorithm. It can be seen from Figure 2 that all R
wave peaks, regardless of their amplitudes, have been
successfully identified and marked, thus verifying the
above algorithm. reliability.

Q Initialization layer )

. Causes of testing Have
Motion state .
fatigue method consequences
|/ Signal processing layer )
L g P g lay
ECG Difference Feature Filter
analysis trend extraction processing
hierarchy ( Analyze the application layer >
Classification . . Model Accuracy
. Normalization . . .
design optimization test
/ Data collection layer >
" Yy
Signal Parameter Result
EEC data modulation input output ‘

Figure 2. Pre-match mood state of sports athletes and their individual differences model framework

The time domain characteristics of HRV mainly include
SDNN, RMSSD, SDSD, NNVGR, PNN50, HR, and
NNVGR: the average value of the HRV sequence. PNN50:
the percentage of the number of points with an absolute
value greater than 50 in the 1-scale difference sequence of
the HRV sequence to the total number of points. HR: the
average number of cardiac cycles per minute. When the
HRYV signal is analyzed in the frequency domain, its power
spectrum is inevitably required. However, the HRV signal
is a time difference signal. It is not sampled at equal

intervals in the time domain and does not have a fixed
sampling rate. Therefore, when analyzing the HRV signal
in the frequency domain, it must first be interpolated to
make it an equally spaced sample signal before subsequent
analysis. This article uses cubic spline interpolation to
interpolate the HRV signal, and the sampling rate is 4 Hz.
It is a comparison before and after 200-second HRV signal
interpolation of a subject in a severe mood state. After the
interpolation is completed, in order to avoid the influence
of a large DC component, the HRV signal must be de-
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averaged, and then the power spectrum analysis of the
HRV signal can be performed. In this paper, the
periodogram method is used to find the HRV power
spectral density curve, the window function is Hanning
window, the window length is 256 points, and the window
overlap length is 86 points. As shown in Table 1, the
statistics of the power values of the 2-minute HRV signal
in the resting state before exercise and in the mild,
moderate, and severe mood states of the same subject in
the same experiment. It can be seen that the state of
exercise mood has a great influence on the HRV power
spectrum curve. The frequency domain features extracted
from the HRV signal mainly include low frequency power
(LF), high frequency power (HF), total power (TP), and the
ratio of low frequency and high frequency power (LE/HF),
where LF refers to the power in the 0.04Hz-0.15Hz
frequency band in the HRV power spectrum. TP is the total
power of all frequency bands of the HRV power spectrum.
As for HF, when the human body is completely resting, it
breathes slowly, and the main energy of HRV is basically
concentrated within 0-0.4Hz. Therefore, analyzing HRV
under completely resting conditions often defines HF as
the 0.15-0.4Hz frequency band.

Table 1.

Athletes’ pre-match mood state corresponds to the HRV
signal power value

Low High

Total Low frequency

State of .
mind frequencyfrequency frequency /High
power  power  power frequency
Mild 0.6 0.9 1.5 0.67
Moderate 1.1 1.4 2.5 0.78
Severe 0.5 0.7 1.2 0.71

However, in the analysis and calculations performed as
part of this study, it is found that in the state of human
motion, the main energy distribution of the HRV power
spectrum also shifts sharply to the right and extends to
about 1.5 Hz in the severe mood state. Exercise state of
mind aggravates the rapid increase in human respiratory
Table 2.

rate. Therefore, in the state of motion, the power in the
0.15-1.5 Hz frequency band in the HRV power spectrum is
taken as the high-frequency power HF. There are
numerous methods for non-linear analysis of HRV signals,
such as sample entropy method, approximate entropy
method, and scatter plot method. In this paper, the
approximate entropy value is selected as the characteristic
index of the nonlinear analysis of HRV. Approximate
entropy (Ap-En) is a non-linear dynamic parameter used
to measure the regularity and unpredictability of time-
domain signal fluctuations and reflects the possibility of
new information in the time-domain signal. In other
words, it is a physical quantity that reflects the complexity
of the time domain signal; the more complex the time
domain signal, the greater its Ap-En value.

Pre-Match Mood State of Sports Athletes
and Application and Analysis of Their
Individual Difference Model

EEG Simulation Based on the Athlete’s Mood State

The EMG signal is the bioelectric signal generated during
the muscle contraction and force, therefore, when the
muscle relaxes, there is basically no EMG signal to be
detected. The spectrum energy distribution of EMG signal
is wider than EEG ECG, generally within 0-500Hz, and the
main energy distribution frequency band is 20-150Hz. Its
amplitude is generally in the range of 0-4mv. The motion
artifacts originate from the friction between the electrode
sheet and the skin, and the main frequency is 3-14 Hz; the
baseline drift comes from changes in breathing and
acquisition equipment, and the main frequency is 0.1 to 2
Hz. Therefore, these two kinds of noise are low-frequency
noises, and do not overlap with the main energy frequency
bands of the EMG signal. Table 2 shows the numerical
comparison of the eigenvalues of HRV in different mood
states. This paper designs a filter with a cut-off frequency
of 15Hz to filter out these two types of noise.

Numerical comparison of various characteristic values of HRV in different mood states

characteristic value 1 characteristic value 2 characteristic value 3 characteristic value 4 characteristic value 5

Good 47.22 32.71 48.44 52.62 49.21
General 3.71 8.36 5.29 7.31 6.54

Bad 0.36 1.41 3.18 2.19 1.86
The statistical values of the HRV characteristics of 28 change.

subjects in the three states of mild mood state, moderate
mood state, and severe mood state during exercise, and
each value is based on the average value of the
characteristic of 28 subjects in this state + standard. The
difference is given in the form. Figure 3 is a histogram of
the mean values of some of the ECG characteristics of 28
subjects in different mood states. It can be seen that, except
for the three characteristics of RMSSD, SDSD, and PNN50,
which have no obvious differences in different mood
states, the other characteristics all show a clear trend of

The statistical values of the HRV characteristics of 28
subjects in the three states of mild mood state, moderate
mood state, and severe mood state during exercise, and
each value is based on the average value of the
characteristic of 28 subjects in this state + standard. The
difference is given in the form. Figure 3 is a histogram of
the mean values of some of the ECG characteristics of 28
subjects in different mood states. It can be seen that, except
for the three characteristics of RMSSD, SDSD, and PNN50,
which have no obvious differences in different mood
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states, the other characteristics all show a clear trend of
change. Among them, the six characteristics of SDNN,
NNVGR, LF, HF, TP, and LF/HF show a significant
downward trend with the deepening of the mood state
during exercise, while the two characteristics of ApEn and
HR show a significant downward trend as the mood state
of exercise increases. The aggravation shows a clear
upward trend. In terms of time domain characteristics,
SDNN has obvious changes in different states, so it can be
used as the time domain characteristics of ECG for mood
state recognition. In terms of frequency domain
characteristics, TP can reflect the activity of the autonomic
nervous system and the degree of cardiac load, which is a

commonly used mood state. For condition monitoring
index, its response physiological characteristics are highly
consistent with SDNN, therefore, it is not selected as a
frequency domain index. Figure 4 shows the average
distribution of the athlete's ECG characteristics in different
mood states. LF and HF can reflect the activity of
sympathetic nerve and vagus nerve respectively, while
LF/HF can comprehensively reflect the relative strength of
sympathetic nerve and vagus nerve activity. It can also
reflect the degree of mood state and the difference is
obvious under different mood states, leading the author to
choose LF/HF as an ECG frequency domain indicator for
mood state recognition.
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Figure 3. Histogram of EMG signal before and after denoising
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Figure 4. The average distribution of the athlete's ECG characteristics in different mood states
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In terms of non-linear characteristics, ApEn changes
significantly with the deepening of the mood state; for this
reason, it is selected as the ECG non-linear index for mood
state recognition. Most athletes show fighting spirit and
self-confidence before the game. 30.6% of the athletes
report that their emotional state before the game generally
does not have much enthusiasm and motivation, and
13.7% of the athletes hold a negative attitude towards
themselves. This part of the athletes may not fully recover
due to fatigue or other reasons, say, they are not active
enough before the game, indicating that the recovery and
adjustment of the athletes before the game is particularly
important. Due to the large individual differences in the
feature values of each experiment, it is not possible to use
a single feature to monitor the mood state, but to use
multiple features to monitor together, in order to avoid

individual differences as much as possible and improve the
recognition accuracy. Figure 5 shows the 2-minute HRV
time-domain waveforms of subjects under four states: pre-
exercise, mild mood state, moderate mood state, and
severe mood state. The horizontal and vertical axis units
are seconds and milliseconds, respectively. It can be seen
from the figure that as the state of mind deepens, the HRV
value becomes smaller and the fluctuation range of HRV
becomes smaller and smaller, which leads to a significant
decrease in the overall frequency domain indicators TP,
LF, and HF. The vagus nerve will gradually occupy a
dominant position, and the heart load will gradually
increase. The fluctuation range becomes smaller, and the
standard deviation of the sequence also becomes smaller,
therefore, the time domain indicator SDNN also decreases
as the mood state deepens.
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Figure 5. Time-domain waveforms of EEG signals in four states of different mood states

Studies show that the non-stationary components in the
signal will reduce the complexity of the signal. At the same
time, in terms of emotional stability before the game, the
author finds that 38.6% of the athletes think that their
stability is average, and 27.42% of the athletes think that
they are unstable, which means that there are also varying
degrees of differences in the psychological endurance of
athletes. These reasons may be due to lack of experience in
the field or the pressure of results. In terms of self-
regulation, 38.6% of the athletes believe that their ability to
self-adjust before the game is average, and 27.42% of the
athletes believe that they are poor. These will directly affect
the athletes’ performance in the game. Generally speaking,
the mental state of athletes is also an indicator of the pre-
match competitive state that requires Chinese medicine
research. As can be seen from the figure, when the mood
state deepens, the non-stationary components in the HRV
waveform gradually decrease, therefore, its approximate
entropy ApEn also increases. Athletes’ pre-match

competitive state can be seen from the analysis of the above
related factors from physical fitness, skills, tactics,
intelligence and psychology, which are all important and
related factors that can affect their state. Coaches and
athletes’ training time and content prior to the match need
to reasonably grasp this one and make good use of the time
at this stage to carry out an overall pre-match adjustment
to the athletes.

Example Results and Analysis

In this experiment, after the subjects finish their exercise,
they collect the ECG signals of their resting state for 10
minutes. Heart rate, as a commonly used index to assess
the cardiovascular system of athletes, plays an important
role in sports training. During training, the morning pulse
can reflect the physical function of the athlete and play a
positive role in determining whether the athlete adapts to
the exercise load and whether he or she experiences
fatigue. If the morning pulse suddenly accelerates or slows
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down, it indicates excessive fatigue or disease. During this
time, the subjects sat on the chair and experienced a state
of rest and recovery. In this section, we use the ECG during
this period to explore the changes in the various
characteristics of the human body's HRV during the
recovery period after intense aerobic exercise. After the
exercise, preparations such as getting off the car and
wiping off the sweat are required, therefore, the ECG signal
of the recovery period of 10 minutes is formally collected
about 1.5 minutes after stopping the exercise. At this time,
the subjects have entered a resting state. This experiment
is designed to test the intensity of exercise with the
characteristics of exercise, and it is of practical significance
to obtain the inflection point of the heart rate. From the
occurrence of heart rate inflection points of multiple
subjects, there are obvious individual differences, that is, as
exercise capacity increases, the heart rate inflection point
drifts from left to right, which means that the stronger the
aerobic capacity, the later the heart rate inflection point
appears. Correlation analysis of the exercise intensity and
crutches rate of multiple subjects found that the two have
significant differences, indicating that the regular changes
in the heart rate turning point in this study do reflect the

differences in individual athletic ability and can give
individual sports athletes maximum aerobic training to
provide a reference.

Figure 6 shows the statistical values of the HRV
characteristics of 28 subjects in several resting state phases.
Each value is given in the form of "mean * standard
deviation". The heart rate inflection point is about 6A of
maximum oxygen consumption and 88%-97% of
maximum heart rate. The speed and heart rate inflection
point are studied in two forms of treadmill and track. At
the same time, blood is taken to determine lactic acid
during two different forms of increasing intensity exercise,
and the 99% track test of the subjects have heart rate
inflection points, while running only 50% of athletes have
heart rate inflection points. The characteristic value of each
state is a truncated heart rate of 2 minutes. Moreover, the
electrical signal is calculated, showing the HRV time-
domain waveform of the resting state of the subject after
exercise. After exercise, the ECG of 1.5-3.5min after the
end of exercise is intercepted in the initial resting state, the
ECG of 5-7min after the end of exercise is intercepted in
the mid-term, and the ECG of 9.5-11.5min is intercepted
after the end of exercise.
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Figure 6. Frequency domain spectrum of athlete's ECG signal

The experiment records the change curve of five ECG
characteristics at 8 recording points during exercise (given
as the average value of 28 subjects at the corresponding
stage). It can be seen from Figure 6 that after the athletes
enter the plateau, the average value of the morning pulse
in the second week increases by 2.73% compared to the
first week when they went to the plateau at the beginning
of the first week. During this period, the training intensity
gradually increases with the extension of the time spent in
the plateau. The athletes show the ups and downs of the
morning pulse during the process of adapting to the

environment and adapting to the exercise intensity.
Coaches should keep close contact with other
physiological indicators during this period to observe and
analyze the physical state and sports state of athletes
together. By the seventh week, the average value of the
morning pulse is 8.18% lower than that of the first plateau
(P<0.05). This may be due to the low-oxygen environment
just entering the plateau. In order to maintain oxygen
supply, the natural reaction of the body is mainly
manifested in increased heart rate and increased
myocardial contractility, which compensates the body's
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hypoxia by increasing blood circulation. The overall trends
of SDNN, TP, LF/HF significantly decrease with the
deepening of the exercise, and the overall trends of ApEn
and HR increase significantly with the passage of exercise
time, however it bears to note that the changing trends are
not completely monotonous with the exercise time. In the
process of oxygen exercise, you can reduce your mood
state to a certain extent by adjusting your breathing and
other means, so that you can continue to exercise.

In the pre-exercise period, the characteristic changes are
the most obvious. This is because the human body is in the
transition stage from the resting state to the exercise state
in the pre-exercise period, and the changes in its
biochemical reactions are greater than the changes in the
long-term exercise state. Simultaneously tested 28 subjects'
SDNN, LF/HF, ApEn, and HR in different mood states
(the RPE value of subjects 23 and 24 did not reach more
than 17 during the whole exercise process, signifying that
there was no severe mood state. The content of the
questionnaire establishes ten aspects of defensive
awareness. The full score for each item is 10 points, and the
total score is 100 points. The coaches of each sports team
(1 head coach, 2 assistant coaches) will score each athlete's
defensive awareness. Then, sort them manually according
to personality type. The results are obtained by using
SPSS15.0 software to perform non-parametric tests of the

scores of two samples. During the trial exercise, the RPE
value is not lower than 9 so there is no mild mood state). It
can be seen that the three characteristics of SDNN, LF/HF,
and ApEn in each subject have a consistent and more
obvious change trend as the mood state deepens, so it can
be used as a good classification feature.

The EEG collected at three points has the same
characteristic change rule under the above four states and
the difference in characteristic value is small. In each
experiment, the power of resting p wave during exercise
was generally improved relative to that before exercise, and
the power of resting state p wave is lower in relative
movement at the initial stage of resting state after exercise.
There is also the power of theta wave. The resting state
during exercise is generally greater than the resting state
before exercise, and the resting state after exercise is
generally smaller than the resting state during exercise at
the initial stage. The alpha wave power also has the above
trend in the three states but the individual differences are
large. However, the approximate entropy ApEn in the
resting state during exercise is generally lower than that in
exercise. The value of the resting state before exercise, and
the initial approximate entropy of the resting state after
exercise is generally higher than that of the resting state
during exercise.
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Figure 7. The broken line of the athlete's state recovery period over time

Figure 7 represents the change curve of each HRV feature
in the post-exercise recovery period with time. It is given
by a sliding time window algorithm. Each time window
intercepts 2min of ECG signal for calculation, and the
overlap time of adjacent windows is 110 seconds. The time
at the beginning of each time window is taken as the time
corresponding to the calculation result of each feature
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value in the time window. It can be seen that during the
recovery period after a lot of exercise, the characteristic
SDNN has a large initial value, then decreases, and finally
shows an increasing trend. This is due to the rapid decrease
in the subject's heart rate and the obvious HRV curve in
the initial period after stopping the exercise of rising,
resulting in a larger standard deviation SDNN.
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Approximately 5 minutes after stopping the exercise, the
subject’s HRV curve stabilizes, so the standard deviation
SDNN decreases. After 8 minutes since the end of the
exercise, the degree of HRV fluctuation gradually
increases, so the SDNN increases again. This article
analyzes the results of the questionnaire, derives the
personality type of each athlete, and classifies it. At the
same time, a questionnaire is issued to the coaches of each
team to evaluate the overall score of each athlete's defensive

awareness. Combining the results of the personality survey
to make a horizontal comparison of strengths and
weaknesses, this study analyzes the differences in defensive
awareness of athletes of different personality types. The
results indicate that extroverted athletes show stronger
desire and active awareness in defensive consciousness,
and defensive actions are more aggressive; whereas,
introverted athletes show more stable and passive
awareness, and defensive actions are more passive sex.
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Figure 8. Athlete's ECG signal error distribution

At the same time, the two characteristics of RMSSD and
SDSD increase with the passage of recovery time,
indicating that the rapid changes in the heart rate
component have been increasing during the recovery
period. Figure 8 shows the error distribution of athlete's
ECG signal. In terms of frequency domain indicators, the
three characteristics of LF, HF, and LF/HF increase with
the passage of recovery time. This is because during the
recovery period, the activity of the vagus nerve and
sympathetic nerve of the subject is increasing, and the
sympathetic nerve activity becomes increasingly
dominant. Analyzing the above data, it is not difficult to
see that the difference in defensive awareness is caused by
differences in personality types. For example, in terms of
technical purpose, the techniques used by extroverted
athletes are reasonable and clear, and the techniques used
by introverted athletes are blindly ambiguous. In terms of
the rationality of behavior, both extroverted and
introverted athletes can perform appropriate and effective
actions. In terms of movement flexibility, extroverted
athletes are usually more decisive, while introverted
athletes are more hesitant and slower. The characteristic
TP during the recovery period after exercise shows an
initial trend of decline and then rise. In the middle of the
recovery period, all aspects of the human body tend to be

stable, therefore, the autonomic nervous system activity
will also decrease. The TP value also decreases; and at the
end of the recovery period, the body's mood state is more
and more diminished, the heart load is increasingly
reduced, and the autonomic nerve activity is also lowered.
Therefore, the TP value also increases (SDNN and TP have
very similar physiological significance and mathematical
significance, so the change trend is similar).

Conclusion

This paper uses extracted features to build a support vector
machine and random forest-based aerobic exercise mood
state recognition model and uses the multi-fold cross-
validation method to test their classification accuracy. The
support vector machine mood state recognition model
algorithm is classic, reliable, simple and efficient; the
random forest mood state recognition model algorithm is
based on decision trees, and more than half of the decision
trees need to make mistakes at the same time, and the
number of votes for a certain misclassification is higher
than the correct classification. Aiming at these influencing
factors, this article uses the relevant theoretical knowledge
of sports training to scientifically intervene and regulate
the sports athletes’ pre-competition conditions so as to
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make the athletes adjust to the best pre-competition
conditions. The number of votes will produce incorrect
classification results; therefore, the classification error rate
is low and the stability is strong. After 5-fold cross-
checking, the recognition rates of SVM and Random
Forest classifier for the degree of mood state reaches
91.39% and 95.15%, respectively. At the same time, the

ECG and EEG changes during the recovery period of the
mood state are analyzed, and a recognition model of the
recovery degree of the mood state based on the
characteristics of the electrocardiogram is constructed, and
the ECG signal of the last 2 minutes of the rest period after
exercise is used to detect the state of mind recovery during
that period.
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